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Abstract

Calibration transfer between near-infrared (NIR) spectrometers is a subtle issue in chemometrics

and process industry. In fact, as even very similar instruments may generate strongly di↵erent

spectral responses, regression models developed on a first NIR system can rarely be used with

spectra collected by a second apparatus. In this work, two novel methods to perform calibration

transfer between NIR spectrometers are proposed. Both of them permit to exploit the specific rela-

tionships between instruments for imputing new unmeasured spectra, which will be then resorted

to for building an improved predictive model, suitable for the analysis of future incoming data.

Specifically, the two approaches are based on Trimmed Scores Regression (TSR) and Joint-Y Par-

tial Least Squares regression (JYPLS), respectively. The performance of these novel strategies

is assessed and compared to that of well-established techniques such as Maximum Likelihood

Principal Component Analysis (MLPCA) and Piecewise Direct Standardisation (PDS) in two real

case-studies.
Keywords: multivariate calibration, calibration transfer, missing data imputation, Trimmed

Scores Regression (TSR), Joint-Y Partial Least Squares regression (JYPLS)
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1. Introduction

Multivariate calibration is of crucial importance when useful quantitative information needs to

be extracted from complex spectroscopic signals. Numerous applications of e.g. Principal Com-

ponent Regression (PCR) or Partial Least Squares regression (PLS) aimed at this end have been

reported over the past decades [1, 2]. However, practical limitations to the deployment of such

techniques appear when existing calibration models are to be applied to measurements recorded

by a new instrument and/or in di↵erent environmental conditions. In fact, even very similar spec-

trometers generally exhibit variations in their responses, which may seriously jeopardise this so-

called calibration transfer.

Several methods have been proposed to overcome this issue and avoid at the same time an ex-

pensive and time-consuming full recalibration, using the newly acquired spectra. One of these

approaches consists in updating the calibration model by merging measurements collected by both

the first and the second spectrometer. However, that is commonly e↵ective only when the two sets

of spectral profiles are rather similar [3].

For the sake of simplicity, suppose now that a certain number of samples has been analysed by

the primary instrument and a subgroup of these samples characterised also by the secondary onei.

Among all the other strategies proposed in the scientific literature for dealing with such a scenario,

Piecewise Direct Standardisation (PDS) [4] has been unanimously pointed out as a reference for

novel techniques due to its local and multivariate nature [3, 5–7]. PDS basically transforms the

spectra recorded by the secondary instrument so that its spectral response matches the one of the

primary instrument. This allows any calibration model, built on the data resulting from the pri-

mary spectrometer, to be used for the analysis of those acquired by the secondary apparatus.

From a slightly di↵erent perspective, the transfer of a calibration model from a NIR spectrometer

to another can be looked at as a missing data imputation problem. In this circumstance, all the

information contained in the available primary and secondary spectra can be exploited to entirely

reconstruct the profiles associated to those samples that were not analysed by the secondary instru-

iAlternatively, two distinct or partially distinct sets of samples may be analysed by the two spectrometers. How-

ever, this contingency will not be contemplated here.
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ment. These profiles can be then utilised for fitting an improved predictive model, suitable for the

assessment of future incoming recordings. Maximum Likelihood Principal Component Analysis

(MLPCA) [8] has been the first computational methodology to be applied for solving the calibra-

tion transfer issue in this peculiar fashion.

In this article, two innovative strategies to perform calibration transfer based on Trimmed Scores

Regression (TSR) [9] and Joint-Y Partial Least Squares regression (JYPLS) [10] are proposed.

Specifically, their performance will be assessed and compared to that of MLPCA and PDS in

two real case-studies, in which the same set of samples was characterised by two di↵erent Near-

Infrared (NIR) spectrometers.

2. Materials

The first dataset analysed here contains 60 spectra measured on 30 pseudo-gasoline samples

within 800 and 1600 nm (401 scanned wavelengths, 30 spectra per instrument). Heptane, iso-

octane, toluene, xylene and decane concentration are the properties of interest to be predicted.

The second dataset relates to 80 corn samples, whose spectral profiles were registered within 1100

and 2498 nm (700 scanned wavelengths for a total number of 160 spectra, 80 per each spectrome-

ter). The response variables are moisture, oil, protein and starch content.

Both of them have been widely used to compare calibration transfer methods [11–13]. The gaso-

line dataset is included in the PLS Toolbox for MATLAB [14], the corn dataset can be downloaded

from http://www.eigenvector.com/data.

Prior to any analysis the gasoline and the corn spectra were simply mean-centred, as also proposed

in [13], while the respective response variables were auto-scaled.

3. Methods

Let Xa (Na⇥Ja) and Xb (Nb⇥Jb) be the matrices containing the spectral profiles collected by the

primary and the secondary spectrometer, respectively. Mind that here the Nb samples characterised

by the secondary instrument were also analysed by the primary one.

3
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3.1. Piecewise Direct Standardisation (PDS)

PDS executes a series of local linear transformations of the spectra collected by the secondary

instrument to subsequently allow the calibration model built for the primary spectrometer to be

exploited for prediction purposes. Specifically, at each j-th wavelength, the absorbance values

registered by the primary instrument (xa, j) are related by Principal Component Regression (PCR)

to a specific spectral window of the profiles of the same samples collected by the secondary spec-

trometer (Xb, j):

xa, j = 1bj + Xb, jf j (1)

where 1 represents a vector of ones of appropriate dimensions. Incoming secondary instrument

data are then adjusted through the estimated standardisation parameters, f j and bj. Here, PDS was

applied as coded in the PLS Toolbox package for MATLAB [14]: all the principal components,

whose eigenvalue (divided by the first one) was found to be larger than 0.0001, were included

in each local regression model. On the other hand, the spectral window width was automatically

optimised within the modelling procedure (see Section 4).

3.2. Maximum Likelihood Principal Component Analysis (MLPCA)

The adaptation of the MLPCA algorithm to model building with missing data is an iterative

procedure based on an imputation alternatively performed by rows and columns. It has been

proven [15–17] that the MLPCA object-wise imputation step is equivalent to performing a Pro-

jection to the Model Plane (PMP) for both PCA model building [9] (i.e. when a PCA model has

to be fitted on incomplete data) and model exploitation [18] (i.e. when a PCA model is fitted on

complete data and exploited to predict the scores of new incomplete observations).

Let X be a matrix of dimensions N ⇥ J. When data are missing in its n-th row, x

T
n , X can be

rearranged so that such missing values are located in its last, say R, columns. Thus,

x

T
n = [x⇤Tn x

#T
n ] (2)

and

X = [X⇤ X

#] (3)
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with ⇤/# connoting the available/missing entries in x

T
n , respectively.

Based on the following partition of the Singular Value Decomposition (SVD) of X:

[X⇤ X

#] = UD[P⇤T P

#T] + E (4)

the MLPCA algorithm imputes x

#T
n as:

x̂

#
n = P

#(P⇤TP

⇤)�1
P

⇤T
x

⇤
n (5)

Concerning the missing data in the j-th column of X, x j, the data partition is performed according

to the available and missing observations of the corresponding variable. This way:
2
666666664
X

⇤

X

#

3
777777775 =

2
666666664
U

⇤

U

#

3
777777775DP

T + E (6)

and:

x̂

#
j = U

#(U⇤TU

⇤)�1
U

⇤T
x

⇤
j (7)

The imputation is iteratively executed until the reconstruction of the available values stabilises.

The MLPCA algorithm is comprehensively detailed in [8]. Besides, a thorough assessment of the

use of MLPCA for missing data imputation is provided in [17].

To transfer a calibration model using this methodology, the complete set of Na primary instrument

spectra, Xa, has to be concatenated with the Nb spectra collected by the secondary spectrometer,

Xb. An augmented data matrix Xab (Na ⇥ (Ja + Jb)) is then constructed, where the unrecorded

secondary instrument profiles are missing (see Figure 1, Imputation box). In other words, if the

sample associated to the n-th row of Xab has not been analysed by the secondary spectrometer,

the partition in Eq. 2 applies: x

⇤T
n and x

#T
n denote its available primary and its missing secondary

instrument spectrum, respectively.

Xab is finally subjected to MLPCA.

3.3. Trimmed Scores Regression (TSR)

TSR is an iterative missing data imputation method, originally proposed for PCA model ex-

ploitation [19, 20]. Afterwards, it was adapted to the more general framework of PCA model
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building in the presence of missing data [9].

TSR imputes the missing values in a dataset by carrying out a regression using the scores of its

available entries. Considering the partition of X in Eq. 3 and its decomposition in Eq. 4, the

missing elements in x

T
n are estimated as:

x̂

#
n = S

#⇤
P

⇤(P⇤TS

⇤⇤
P

⇤)�1
P

⇤T
x

⇤
n (8)

where S

⇤⇤ = X

⇤T
X

⇤

N�1 and S

#⇤ = X

#T
X

⇤

N�1 .

The imputation is iteratively executed until the reconstruction of the missing values stabilises.

A complete survey on TSR can be found in [9]. A Graphical User Interface for TSR-based missing

data imputation, the Missing Data Imputation Toolbox for MATLAB [21], is also available at

http://mseg.webs.upv.es/Software_e.html.

Calibration transfer by TSR is achieved in the same way as for MLPCA, that is building the

augmented array Xab and submitting it to the computational procedure described before (see Figure

1, Imputation box).

3.4. Joint-Y Partial Least Squares regression (JYPLS)

JYPLS [10] is a Non-linear Iterative PArtial Least Squares (NIPALS) algorithm variant, ini-

tially developed for modelling the latent variable structure shared by two or more sets of data

(say Xs) via a PLS-based regression against their corresponding responses (say Ys). When only

two di↵erent couples of data blocks are dealt with, namely Xa-Ya and Xb-Yb, the mathematical

formulation of the JYPLS model is given by:

YJ =

2
666666664
Ya

Yb

3
777777775 =

2
666666664
Ta

Tb

3
777777775Q

T
J + E

YJ (9)

Xa = TaP
T
a + E

Xa (10)

Xb = TbP

T
b + E

Xb (11)

Ta = XaW
⇤
a (12)

Tb = XbW

⇤
b (13)
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where Ta/Tb, Pa/Pb and W

⇤
a/W

⇤
b are the JYPLS scores, loadings and weighing matrices related to

Xa/Xb, respectively. The originality of this approach concerns the fact that only one single set of

loadings, QJ, is derived for both Ya and Yb, which defines a combined plane mapped by the YJ

joint array (see Equation 9).

Until now, JYPLS has been mainly resorted to for product transfer between di↵erent manufac-

turing sites, but here its application is extended to cases in which the common sources of varia-

tion underlying measurements resulting from multiple instruments and mostly related to specific

properties of interest need to be modelled (i.e. calibration transfer). To this end, two possible

JYPLS-based computing strategies were implemented, namely JYPLS-noinv and JYPLS-inv.

• JYPLS-noinv - Let Ya and Yb be the matrices including the measured response variables

associated to the samples analysed by the primary and the secondary spectrometer, respec-

tivelyii. Once a JYPLS model is built as in Equations 9-13 (see Figure 1, Model transfer

box), the same responses for new samples characterised by the secondary instrument, Yb,new,

can be predicted from their spectral profiles, Xb,new, as (see Figure 1, External validation II

box):

Yb,new = Xb,newW

⇤
bQ

T
J (14)

• JYPLS-inv - On the other hand, as for TSR, spectra unrecorded by the secondary instrument

can be reconstructed, provided they are associated to samples analysed by the primary one

and whose response values (Yb,unrecorded) are then present in Ya, by the following inversion

(see Figure 1, Model inversion box):

Xb,unrecorded = Yb,unrecorded(QJQ
T
J )†QJP

T
b (15)

where † denotes the Moore-Penrose pseudo-inverse [22]. Such imputed spectra, fused to

Xb, are then exploited for fitting an improved PLS predictive model (see Figure 1, Model

calibration box), suitable for the assessment of future incoming data (see Figure 1, External

validation I box).

iiHere the rows of Yb are also contained in Ya, as they relate to samples analysed by both the secondary and the

primary instrument. This is, however, not a necessary requirement to apply JYPLS.
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4. Modelling procedure

The comparative study among PDS, MLPCA, TSR and JYPLS was carried out according to a

5-step procedure (see Figure 1):

1. both the primary and secondary instrument data blocks were randomly split into calibration

(2 thirds of the original spectra) and validation (1 third of the original spectra) sets (see

Figure 1, Data split box). 20 split rounds were conducted to prevent spurious results from

being yielded;

2. secondary instrument calibration subsets of increasing size were generated to determine the

minimum number of measurements needed to be collected for accomplishing an accurate

calibration transfer. The samples belonging to each one of these subsets were selected by

the Kennard-Stone (KS) algorithm [23], probably the most popular computational procedure

for data-representative object identification [24, 25] (see Figure 1, Sample selection box)iii;

3. the four methods under study were then applied in the following fashion:

• when TSR, MLPCA and JYPLS-inv, which are missing data imputation-based ap-

proaches (see Section 1), were handled, the secondary instrument calibration spectra

left out of each subset were consecutively reconstructed as described before (see Fig-

ure 1, Imputation, Model transfer and Model inversion boxes). They were then merged

with those belonging to the respective calibration subset to fit a new PLS regression

model (see Figure 1, Model calibration box);

• by JYPLS-noinv, predictive JYPLS models were constructed fusing both the primary

spectrometer calibration set and the di↵erent secondary spectrometer calibration sub-

sets as detailed in Section 3.4 (see Figure 1, Model transfer box);

• the PDS standardisation was performed relating the secondary instrument calibration

subsets of spectra to their corresponding profiles registered by the primary spectrome-

ter (see Figure 1, Parameter fitting and Standardisation boxes). Notice that the prop-

erties of interest of the corrected spectra are thereafter predicted by a PLS regression

iiiHere, KS is run on the scores of a PLS model resulting from the primary spectrometer calibration data.
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model built on the whole primary instrument calibration set (see Figure 1, External

validation III box).

For the various strategies, the parameters to be optimised (number of components of the

imputation model, number of components of the regression model, PDS spectral window

width) were adjusted in order to minimise the average Root Mean Square Error in Cross-

Validation (RMSECV), defined as:

RMS ECV =

PK
k=1

qPN
n=1(yn,k�ŷn,k)2

N

K
(16)

where yn,k represents the actual value of the k-th response variable associated to the n-th

calibration sample and ŷn,k is its final predictioniv.

4. The performance of PDS, MLPCA, TSR and JYPLS were finally assessed according to the

average Root Mean Square Error in Prediction (RMSEP):

RMS EP =

PK
k=1

qPN0
n0=1(yn0 ,k�ŷn0 ,k)2

N0

K
(17)

where yn0,k represents the actual value of the k-th response variable associated to the n0-th

validation sample and ŷn0,k is its final prediction, while N0 equals the total number of spectra

included in the validation setiv (see Figure 1, External validation I, External validation II

and External validation III boxes);

5. Statistically significant di↵erences among the considered approaches were finally evaluated

via a mixed-e↵ect ANalysis Of VAriance (ANOVA), taking into account four factors: cal-

ibration transfer technique, size of the secondary instrument calibration subset and their

interaction (fixed-e↵ect factors) as well as split round (random-e↵ect factor, nested to the

size of the secondary instrument calibration subset). If any e↵ect or interaction was found

to be statistically significant, the 95% Least Significance Di↵erence (LSD) intervals were

calculated to assess which methods were di↵erent from the others.

ivThe reported RMSECV and RMSEP values concern autoscaled response variables owing to the di↵erences in

their original units of measurements.
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Figure 1: Flow-chart of the comparative study. Std stands for standardised. ˆ refers to predicted values. Notice that
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It is worth noting that in all the cases the values of the various response variables were predicted

simultaneously by global PLS2-based models. Although performing a single PLS1 regression

for each one of them could have constituted a better solution from a predictive perspective, the

adopted procedure enabled an easier and more immediate global comparison.

5. Results

5.1. Gasoline dataset

For each spectrometer, 20 pseudo-gasoline samples were assigned to the calibration set and the

remaining 10 to the validation set. 15 secondary instrument calibration subsets, containing from 5

to 19 spectral profiles, were generated.

5.1.1. Missing data imputation

As TSR, JYPLS-inv and MLPCA rely on a preliminary missing data imputation step, it is

worth assessing the accuracy of the reconstruction of the unmeasured spectra, since they will be

then resorted to for building the final predictive PLS model.

Figure 2 permits to compare original and imputed profiles for one of the 20 split rounds. Their

correlation and �2 distance are represented in Figures 2A, 2D, 2G and 2B, 2E, 2H, respectively.

Each line refers to the best model selected for one specific secondary instrument calibration sub-

set. High correlations (larger than 0.9999) and low �2 distance values (smaller than 0.001) were

yielded by TSR and JYPLS-inv, while several issues appeared when dealing with MLPCA. First,

it often su↵ered from convergence problems (as already pointed out by Feudale et al. [3]), which

dramatically slowed the computational procedure down. Consequently, the reconstructed spectra

were found to be considerably di↵erent from their actual profiles (see Figure 2I). For these reasons,

MLPCA was not taken into account in the final study.

5.1.2. Comparative study

Figure 3A allows the performance of the di↵erent calibration transfer techniques under study

to be examined. Each point in the plot represents the average RMS EP value, estimated from the

10-sample external validation set, over the 20 split rounds (for 5- to 19-sample secondary instru-

ment calibration subsets). As expected, for all the approaches, the higher the size of the secondary
11
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Figure 2: Gasoline dataset - A), D) and G) show the correlation coe�cients between the original spectra and those

imputed by TSR, JYPLS-inv and MLPCA, respectively. B), E) and H) represent their corresponding �2 distance

values. The dotted-dashed blue lines refer to the case in which the secondary instrument calibration subset was

constituted by 5 samples and 15 spectra were imputed. The solid red lines refer to the case in which the secondary

instrument calibration subset was constituted by 10 samples and 10 spectra were imputed. The dashed green lines

refer to the case in which the secondary instrument calibration subset was constituted by 15 samples and 5 spectra

were imputed. C), F) and I) display the original and reconstructed profiles in the second of these three cases
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instrument calibration subset, the lower the RMS EP.

As the e↵ect of all the factors included in the ANOVA model was found to be statistically sig-

nificant (p-value< 0.05), the 95% LSD intervals were calculated to point out existing di↵erences

among methods. For the sake of an easy visualisation, dashed-line ellipses are used in Figure 3A

to highlight them. Specifically, methods embraced by the same ellipse show no statistical di↵er-

ence. On the other hand, methods embraced by di↵erent ellipses are statistically di↵erent.

Clearly, PDS guaranteed the lowest RMS EP when the secondary instrument calibration subset

consisted of 5/6 samples. No statistically significant di↵erences were detected between PDS and

TSR for a 7-sample secondary instrument calibration subset and between PDS and JYPLS-inv

when a 10-sample secondary instrument calibration subset was concerned. From 10 samples on-

wards, the RMS EP stabilised around 0.09 for PDS, but it continuously decreased for TSR and

JYPLS-inv, reaching values around 0.05-0.06 (for 12-13 to 19 samples). The straight line in Fig-

ure 3A indicates the RMS EP value obtained when a full recalibration was performed, i.e. when

the whole set of 20 secondary instrument calibration samples was used to build a new predic-

tive model. Although it cannot be directly compared to the outcomes resulting from PDS, TSR,

JYPLS-inv and JYPLS-noinv, it eases the determination of the number of spectra needed to be

collected by the secondary spectrometer for generating no statistically significant di↵erences with

respect to full recalibration. TSR required 12, while JYPLS-inv 13. On the other hand, PDS and

JYPLS-noinv always showed a statistically worse performance than full recalibration.

5.1.3. Instruments with di↵erent resolutions

A common situation faced by practitioners in industrial environments is transferring calibra-

tion models between instruments with diverse spectral resolution. This problem has already been

addressed in [26], where the authors propose a novel PLS-based approach resulting in similar out-

comes as PDS.

Figures 3B-3D show the results of the whole analysis, conducted gradually reducing the spectral

resolution of the secondary instrument. The performance of all the methods was basically the

same as in the full resolution case described in Section 5.1.2. However, for PDS, a slight gradual

decrease in the quality of the calibration transfer can be noticed.
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Figure 3: Gasoline dataset - RMSEP values obtained for the di↵erent sizes of the secondary spectrometer calibration

subset with A) the same spectral resolution for both instruments, B) 1
2 , C) 1

4 and D) 1
8 of the primary instrument spectral

resolution for the secondary spectrometer. Dashed ellipses mark the statistically significant di↵erences among groups

of methods (p�value < 0.05)
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5.1.4. Sample selection e↵ect
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Figure 4: Gasoline dataset - E↵ect of the Kennard-Stone algorithm-based sample selection on the performance of the

calibration transfer methods under study

The e↵ect of the secondary spectrometer calibration subset sample selection is here assessed.

10 random selections were performed for one particular split round and the final RMS EP values

were then compared to those obtained by preliminarily running KS. It is clear from Figure 4 that

KS generally returned a lower RMSEP, very close to that achievable through a full recalibration. It

then enabled a better calibration transfer plausibly due to the fact that it permits to choose a subset

of samples, which is statistically representative of the experimental domain related to the spectral

data collected by the primary instrument. This is not necessarily the case when such a selection is

carried out at random.
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5.2. Corn dataset

For each spectrometer, 54 corn samples were assigned to the calibration set and the remaining

26 to the validation set. 10 secondary instrument calibration subsets, containing from 5 to 50

spectral profiles (5-spectra intervals), were generated.

5.2.1. Missing data imputation

Figure 5 permits to compare original and imputed corn sample spectral profiles for one of the

20 split rounds. TSR preserved its reconstruction ability and MLPCA su↵ered from the same

problems observed for the gasoline dataset. Regarding JYPLS-inv, the correlation coe�cients/�2

distance values were rather high/low, but the imputed spectra showed less variability than the real

ones (see e.g. Figure 5F). This happened because the large di↵erence in the o↵set of these latter

is scarcely related to the properties to be predicted. As the imputation here involves the joint-Y

loadings matrix, QJ, such a di↵erence is not transferred to the reconstructed spectra (see Equation

9). Thus, one can think of JYPLS-inv as filtering spectral variations, which is uninteresting from

a predictive point of view.

5.2.2. Comparative study

Existing di↵erences among methods were investigated as in the previous case-study (also here

the e↵ect of all the ANOVA factors was found to be statistically significant). Figure 6A displays

the results of the comparative study conducted on the corn dataset. Again, PDS showed a bet-

ter performance for small secondary instrument calibration subsets (5-10 samples). For 20-25

samples, there were no statistical di↵erences between PDS, TSR, JYPLS-inv and JYPLS-noinv.

Finally, from 30 samples onwards, the proposed approaches outperformed PDS, similarly as for

the gasoline dataset. From 40 samples onwards, TSR, JYPLS-inv and JYPLS-noinv exhibited no

significant di↵erences with respect to full recalibration.

5.2.3. Instruments with di↵erent resolutions

In this case, the reduction of the spectral resolution of the secondary instrument strongly af-

fected the quality of the PDS-based calibration transfer. In fact, when the resolution of the sec-

ondary spectrometer was decreased to 1
8 , even for small secondary calibration subsets, the per-
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Figure 5: Corn dataset - A), D) and G) show the correlation coe�cients between the original spectra and those imputed

by TSR, JYPLS-inv and MLPCA, respectively. B), E) and H) represent their corresponding �2 distance values. The

dotted-dashed blue lines refer to the case in which the secondary instrument calibration subset was constituted by

10 samples and 44 spectra were imputed. The solid red lines refer to the case in which the secondary instrument

calibration subset was constituted by 25 samples and 29 spectra were imputed. The dashed green lines refer to the

case in which the secondary instrument calibration subset was constituted by 40 samples and 14 spectra were imputed.

C), F) and I) display the original and reconstructed profiles in the second of these three cases
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Figure 6: Corn dataset - RMSEP values obtained for the di↵erent sizes of the secondary spectrometer calibration

subset with A) the same spectral resolution for both instruments, B) 1
2 , C) 1

4 and D) 1
8 of the primary instrument

spectral resolution for the secondary spectrometer. Dashed ellipses mark the statistically significant di↵erences among

groups of methods (p�value < 0.05)

formance of PDS was found to be statistically worse than the other compared approaches. On

the other hand, TSR, JYPLS-inv and JYPLS-noinv were found to be quite robust towards such a

change (see Figures 6B-6D).

5.2.4. Sample selection e↵ect

The e↵ect of the secondary spectrometer calibration subset sample selection can be evaluated

by looking at Figure 7. Here, especially when the number of spectra included in this subset was

not particularly high, some random selection runs permitted to obtain better results in terms of

RMS EP. However, for larger subsets, KS-based selection enabled better prediction than random
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Figure 7: Corn dataset - E↵ect of the Kennard-Stone algorithm-based sample selection on the performance of the

calibration transfer methods under study

ordering.

6. Discussion

When carrying out a calibration transfer with a very small secondary instrument calibration

subset (around 5-10 samples), PDS showed better (or equal) results than TSR and JYPLS-inv, but

its performance was worse than full recalibration. Nevertheless, when the size of the secondary in-

strument calibration subset was enlarged, TSR and JYPLS-inv clearly outperformed PDS, achiev-

ing a similar error rate as for full recalibration. No evident conclusions can be drawn regarding the

performance of JYPLS-noinv, as the quality of its outcomes changed depending on the analysed

dataset. On the other hand, it can be said that it was found to be, in general, as reliable as TSR and
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JYPLS-inv when the corn dataset was dealt with, but statistically worse in the gasoline case-study.

The number of spectra to be collected by the secondary spectrometer for a precise calibration

transfer was also assessed. TSR and JYPLS-inv yielded very similar results to full recalibration

even if only about the 60% of the available spectra were included in the corresponding calibration

subset. On the other hand, PDS never reached such a degree of accuracy.

PDS was strongly a↵ected by the reduction of the spectral resolution of the secondary instrument

when the corn dataset was concerned, while TSR, JYPLS-inv and JYPLS-noinv seemed not to

su↵er from the same issue.

In terms of unmeasured spectra reconstruction, TSR resulted in the best performance. In contrast,

JYPLS-inv acted as a sort of filter removing the variations in the spectra not related to the proper-

ties to be predicted, and consequently producing deviations from their original shape.

Moreover, it is worth saying that both JYPLS-inv and JYPLS-noinv are the unique strategies,

which could be resorted to when distinct or partially distinct sets of samplesv are analysed by the

two spectrometers.

Finally, it was shown that selecting the samples using KS generally permitted to achieve better

results, regardless the calibration transfer technique resorted to.

7. Conclusions

Two novel methods to perform calibration transfer between NIR spectrometers, based on TSR

and JYPLS, respectively, were proposed. They outperformed PDS and guaranteed a very similar

performance to that resulting from a full recalibration when only about the 60% of the spectra

collected by the secondary instrument was available. Both the approaches also showed a su�cient

robustness towards the reduction of its spectral resolution. In addition, TSR allowed unmeasured

spectra to be accurately imputed, while the inversion of the JYPLS models yielded reconstructed

spectral profiles filtered of all the variation not of interest from a predictive point of view.

vProvided that the values of their properties of interest are known.
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